Laurea in Economia e Commercio (Vicenza)

Corso a esaurimento (attivi gli anni successivi al primo)

Statistica

Codice insegnamento
4S00121
Docenti
Francesca Rossi, Bruno Gobbi
Coordinatore
Francesca Rossi
crediti
9
Altri corsi di studio in cui è offerto
Settore disciplinare
SECS-S/01 - STATISTICA
Lingua di erogazione
Italiano
Sede
VICENZA
Periodo
primo semestre (lauree) dal 28-set-2020 al 23-dic-2020.

Orario lezioni

Vai all'orario delle lezioni

Obiettivi formativi

L’insegnamento si propone di fornire le tecniche di base della statistica descrittiva, del calcolo delle probabilità e dell'inferenza statistica a studenti di corsi di laurea in discipline economiche e aziendali. Nel loro insieme, tali tecniche forniscono la strumentazione per l'analisi quantitativa nei processi conoscitivi legati all'osservazione di fenomeni collettivi. Da un punto di vista applicativo, tali tecniche sono indispensabili a fini descrittivi, interpretativi e decisionali per la gestione delle informazioni statistiche ufficiali nonché per la conduzione d'indagini statistiche inerenti fenomeni economici e sociali. Oltre a fornire il necessario apparato statistico-matematico, l’insegnamento si prefigge l’obiettivo di fornire strumenti concettuali per una valutazione critica delle metodologie prese in considerazione. Al termine delle lezioni, lo studente dovrà essere in grado utilizzare gli strumenti appresi per condurre analisi statistiche relative a fenomeni economici e sociali.

Programma

Modalità didattiche: La maggior parte del corso si svolgerà attraverso una serie di lezioni frontali alle quali gli studenti sono fortemente invitati a partecipare prendendo regolarmente gli appunti. Fanno parte integrante del corso una serie di esercitazioni. Alcune delle esercitazioni, da svolgere a casa individualmente, saranno successivamente corrette in aula. Tutte le esercitazioni sono indispensabili per una adeguata comprensione degli argomenti del corso.

Programma:

a) Statistica descrittiva

Concetti introduttivi; fenomeni collettivi, popolazione e campione; la raccolta, lo spoglio e la classificazione dei dati; caratteri qualitativi e quantitativi; fonti statistiche.
Tipi di dati statistici; distribuzioni statistiche: semplici, doppie, multiple, unitarie, di frequenza, relative, pesate, di quantità; rappresentazioni grafiche; istogramma.
Frequenze cumulate e retrocumulate; funzione di ripartizione a gradini per distribuzioni di frequenza; funzione di ripartizione continua per dati in classi.
Sommatorie semplici e doppie e produttorie: proprietà.
Gli indici di localizzazione; la media aritmetica; la media armonica; la media geometrica; la media quadratica; la media cubica; la media potenziata di quarto ordine e le altre medie potenziate; le medie lasche; la mediana; la mediana come centro di grado 1; quartili, decili, percentili e quantili; la moda.
La variabilità e gli indici di variabilità; il campo di variazione; la differenza interquartile; gli scostamenti semplici medi; lo scarto quadratico medio e la varianza; la varianza di una trasformazione lineare e del miscuglio; la standardizzazione; differenza media; gli indici relativi di variabilità: il coefficiente di variazione.
I momenti dall’origine e i momenti centrali; l’asimmetria e gli indici di asimmetria; la curtosi e le misure di curtosi.
Distribuzioni doppie o multiple, unitarie e di frequenza; media aritmetica della somma di più variabili; media aritmetica del prodotto di due variabili; covarianza; varianza della somma di più variabili; distribuzioni condizionate; indipendenza; indice di dipendenza chi-quadrato; indice di connessione C.
Interpolazione statistica; il metodo dei minimi quadrati; la retta dei minimi quadrati; il coefficiente di correlazione lineare r; la disuguaglianza di Cauchy-Schwarz; il coefficiente di determinazione R2; devianza totale, spiegata e residua.

b) Probabilità

Esperimenti aleatori; spazio campionario; diagrammi ad albero; eventi aleatori e operazioni tra eventi; elementi di calcolo combinatorio.
Spazi di probabilità; definizione assiomatica della probabilità; diverse interpretazioni della probabilità.
Probabilità condizionata; legge del prodotto; indipendenza stocastica tra eventi; formula delle probabilità totali; teorema di Bayes.
Variabili aleatorie; funzione di ripartizione; variabili aleatorie discrete e continue; trasformate di variabili aleatorie; valore atteso e varianza. Particolari distribuzioni discrete: uniforme, Bernoulli, binomiale.
Particolari distribuzioni continue: rettangolare, normale, esponenziale negativa.
Variabili aleatorie doppie discrete; distribuzione di probabilità congiunta; distribuzioni di probabilità marginali e condizionate; indipendenza tra variabili aleatorie; covarianza; coefficiente di correlazione di Bravais.
Variabili aleatorie multiple (cenni).
Combinazioni lineari di variabili aleatorie; media campionaria di variabili aleatorie indipendenti; somma di variabili aleatorie normali indipendenti.
Legge (debole) dei grandi numeri; legge dei grandi numeri di Bernoulli per frequenze relative.
Teorema del limite centrale.

c) Statistica inferenziale

Campioni probabilistici; media campionaria; frequenza relativa campionaria; varianza campionaria; distribuzioni campionarie chi-quadrato, t di Student, F di Snedecor.
Stima puntuale; correttezza, efficienza e consistenza degli stimatori; stima di una media, di una proporzione, di una varianza.
Stima per intervallo (intervallo di confidenza) per una media, per una proporzione (grandi campioni), per una varianza.
Verifica delle ipotesi; test ad una coda ed a due code per una media, per una proporzione (grandi campioni), per una varianza; confronto tra due proporzioni (grandi campioni); confronto tra due medie; confronto tra due varianze.

Libro di testo

- G. CICCHITELLI, P. D'URSO, M. MINOZZO (2017), Statistica: principi e metodi, Terza edizione, Pearson Italia, Milano.

Testi di approfondimento

- A. AZZALINI (2001), Inferenza statistica: una presentazione basata sul concetto di verosimiglianza, Seconda edizione. Springer Verlag Italia.
- E. BATTISTINI (2004), Probabilità e statistica: un approccio interattivo con Excel. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Statistica descrittiva, Collana Schaum's, numero 109. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Calcolo delle probabilita', Collana Schaum's, numero 110. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Statistica inferenziale, Collana Schaum's, numero 111. McGraw-Hill, Milano.
- F. P. BORAZZO, P. PERCHINUNNO (2007), Analisi statistiche con Excel. Pearson, Education.
- D. GIULIANI, M. M. DICKSON (2015), Analisi statistica con Excel. Maggioli Editore.
- P. KLIBANOFF, A. SANDRONI, B. MODELLE, B. SARANITI (2010), Statistica per manager, Prima edizione, Egea.
- D. M. LEVINE, D. F. STEPHAN, K. A. SZABAT (2014), Statistics for Managers Using Microsoft Excel, Seventh Edition, Global Edition. Pearson.
- M. R. MIDDLETON (2004), Analisi statistica con Excel. Apogeo.
- D. PICCOLO (1998), Statistica, Seconda edizione 2000. Il Mulino, Bologna.
- D. PICCOLO (2010), Statistica per le decisioni, Nuova edizione. Il Mulino, Bologna.


Guida allo studio

Durante lo svolgimento del corso sarà indicato, per ogni specifico argomento, quali parti studiare del libro di testo e quali altri testi consultare.
Gli studenti non frequentanti possono rivolgersi al docente per avere le indicazioni necessarie.
Una guida definitiva allo studio del libro di testo sarà distribuita a fine corso.
Si consiglia di seguire le lezioni e le esercitazioni e di prendere regolarmente gli appunti.


Conoscenze preliminari

Per seguire con profitto il corso non sono richieste particolari conoscenze preliminari di matematica.
Si assumono per date le nozioni acquisite con gli insegnamenti di base, in particolare le nozioni di limite, derivata e integrale.

Esercitazioni

Fanno parte integrante del corso una serie di esercitazioni.
Alcune delle esercitazioni, da svolgere a casa individualmente, saranno successivamente corrette in aula.
Tutte le esercitazioni sono indispensabili per una adeguata comprensione degli argomenti del corso.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
G. Cicchitelli, P. D'Urso, M. Minozzo Statistica: principi e metodi (Edizione 3) Pearson Italia, Milano 2018 9788891902788

Modalità d'esame

Gli studenti saranno valutati sia sulla teoria che sugli esercizi di natura più pratica. Gli studenti potranno utilizzare una calcolatrice e le tavole statistiche, ma non sarà consentito utilizzare nessun altro tipo di materiale (libri, appunti, ecc.).

Per sostenere l'esame lo studente deve presentarsi munito di tessera universitaria, ovvero di libretto universitario, o di idoneo documento di riconoscimento.

L'esame si svolgerà in modalità scritta, in presenza o via Zoom (a scelta dello studente). Per lo svolgimento della prova via Zoom gli studenti dovranno aspettarsi un test a scelta multipla, seguito, solamente per gli studenti che avranno superato il quiz, da un brevissimo orale per discutere le risposte date nel quiz. I contenuti delle prove in presenza o virtuali saranno comparabili ai temi d'esame degli anni precedenti.


************** footer di Medicina *****************

© 2002 - 2021  Università degli studi di Verona
Via dell'Artigliere 8, 37129 Verona  |  P. I.V.A. 01541040232  |  C. FISCALE 93009870234