Master’s degree in Economics and Data Analysis

Econometrics

Course code
4S02464
Name of lecturer
Alessandro Bucciol
Coordinator
Alessandro Bucciol
Number of ECTS credits allocated
9
Academic sector
SECS-P/05 - ECONOMETRICS
Language of instruction
English
Site
VERONA
Period
secondo semestre (lauree magistrali) dal Mar 1, 2021 al Jun 1, 2021.

Lesson timetable

Go to lesson schedule

Learning outcomes

The course provides an overview of the main econometric tools, with particular emphasis on economic applications, developed interactively using professional packages. The program covers standard econometric models (OLS regression and its diagnostics) as well as more advanced models for the analysis of cross-sectional, time series and panel data (IV, probit, tobit, random and fixed effects). Particular attention will be given to the intuition behind each topic, in addition to more formal issues. Towards the end of the course a voluntary assignment will be proposed, with the aim of translating research questions into empirical analyses, applying on real data the tools learnt in class, and stimulating discussion among students. At the end of the course, students should be able to: i) read and critically interpret empirical works developed by other researchers, ii) manage small and large datasets in order to extract useful information, and iii) design and implement on their own empirical analyses based on real data.

Syllabus

1) Introduction
1.1) What is Econometrics?
Definition; cross-section, time series and panel data.
1.2) R tutorial
Data management; basic statistics; graphics.

2) Ordinary Least Squares (OLS) Estimator
2.1) Introduction
Univariate and multivariate regression; marginal effects and elasticity; R-squared and adjusted R-squared; outliers.
2.2) Properties
Gauss-Markov assumptions; unbiasedness; efficiency; consistency; asymptotic normality.
2.3) Testing
t-test on one restriction; F test on several restrictions.

3) OLS Diagnostics
3.1) Specification
Collinearity; superfluous and omitted variables; RESET test of specification; Chow test of structural stability.
3.2) Heteroskedasticity
White test and Breusch-Pagan test; White robust standard errors.
3.3) Time series
Durbin-Watson test and Breusch-Godfrey test; Newey-West robust standard errors.

4) Instrumental Variable (IV) Estimator
4.1) Estimator
Assumptions; Simple instrumental variable (SIV) and generalized instrumental variable (GIV); properties; two-stage derivation (2SLS).
4.2) Instrument selection
Relevance test; weak instruments; Sargan validity test; Hausman exogeneity test.

5) Limited Dependent Variable (LDV)
5.1) Binary dependent variable
Linear probability model (LPM); probit and logit models; marginal effects; maximum likelihood estimate; goodness of fit; hypothesis testing.
5.2) Truncated and censored data
Truncated regression; tobit-I model; tobit-II and heckman models; marginal effects; goodness of fit.

6) Models for Panel Data
6.1) Main models
Pooled effects, fixed effects and random effects; goodness of fit.
6.2) Tests and further models
Comparison tests; attrition; diff-in-diff; dynamic models.

Reference books
Author Title Publisher Year ISBN Note
Marno Verbeek A Guide to Modern Econometrics (Edizione 4) John Wiley and Sons 2012 978-1-119-95167-4

Econometrics

Course code
4S02464
Name of lecturer
Alessandro Bucciol
Coordinator
Alessandro Bucciol
Number of ECTS credits allocated
9
Academic sector
SECS-P/05 - ECONOMETRICS
Language of instruction
English
Site
VERONA
Period
secondo semestre (lauree magistrali) dal Mar 1, 2021 al Jun 1, 2021.

Lesson timetable

Go to lesson schedule

Learning outcomes

The course provides an overview of the main econometric tools, with particular emphasis on economic applications, developed interactively using professional packages. The program covers standard econometric models (OLS regression and its diagnostics) as well as more advanced models for the analysis of cross-sectional, time series and panel data (IV, probit, tobit, random and fixed effects). Particular attention will be given to the intuition behind each topic, in addition to more formal issues. Towards the end of the course a voluntary assignment will be proposed, with the aim of translating research questions into empirical analyses, applying on real data the tools learnt in class, and stimulating discussion among students. At the end of the course, students should be able to: i) read and critically interpret empirical works developed by other researchers, ii) manage small and large datasets in order to extract useful information, and iii) design and implement on their own empirical analyses based on real data.

Syllabus

1) Introduction
1.1) What is Econometrics?
Definition; cross-section, time series and panel data.
1.2) R tutorial
Data management; basic statistics; graphics.

2) Ordinary Least Squares (OLS) Estimator
2.1) Introduction
Univariate and multivariate regression; marginal effects and elasticity; R-squared and adjusted R-squared; outliers.
2.2) Properties
Gauss-Markov assumptions; unbiasedness; efficiency; consistency; asymptotic normality.
2.3) Testing
t-test on one restriction; F test on several restrictions.

3) OLS Diagnostics
3.1) Specification
Collinearity; superfluous and omitted variables; RESET test of specification; Chow test of structural stability.
3.2) Heteroskedasticity
White test and Breusch-Pagan test; White robust standard errors.
3.3) Time series
Durbin-Watson test and Breusch-Godfrey test; Newey-West robust standard errors.

4) Instrumental Variable (IV) Estimator
4.1) Estimator
Assumptions; Simple instrumental variable (SIV) and generalized instrumental variable (GIV); properties; two-stage derivation (2SLS).
4.2) Instrument selection
Relevance test; weak instruments; Sargan validity test; Hausman exogeneity test.

5) Limited Dependent Variable (LDV)
5.1) Binary dependent variable
Linear probability model (LPM); probit and logit models; marginal effects; maximum likelihood estimate; goodness of fit; hypothesis testing.
5.2) Truncated and censored data
Truncated regression; tobit-I model; tobit-II and heckman models; marginal effects; goodness of fit.

6) Models for Panel Data
6.1) Main models
Pooled effects, fixed effects and random effects; goodness of fit.
6.2) Tests and further models
Comparison tests; attrition; diff-in-diff; dynamic models.

Reference books
Author Title Publisher Year ISBN Note
Marno Verbeek A Guide to Modern Econometrics (Edizione 4) John Wiley and Sons 2012 978-1-119-95167-4

© 2002 - 2021  Verona University
Via dell'Artigliere 8, 37129 Verona  |  P. I.V.A. 01541040232  |  C. FISCALE 93009870234